• 邮箱

    info@e-omics.com
  • 电话

    4006321322
  • 微信

    18515913365
  • QQ

    47422642

当前位置:首页>蛋白质测序>蛋白质测序

单克隆抗体测序
技术原理
单克隆抗体是由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体。它在药物研发、诊断试剂开发中扮演了关键的角色。抗体分子本的一级结构,特别是它的CDR区域氨基酸序列是其发挥生物学功能的核心。因此,对单抗分子进行准确快速的鉴定分析具有重要的意义。通过先进的高分辨率质谱仪Obitrap Fusion Lumos,结合丰富的生物信息学分析经验,可以对不同亚型抗体(例如IgG和IgM)和不同类型抗体(荧光偶联抗体,固定化抗体,不同物种的抗体)的一级序列信息进行快速准确的分析。
 
 

单克隆抗体测序技术原理图

技术特点
l  不基于核酸测序与杂交瘤细胞;
l  获得抗体的轻重链完整氨基酸,可以直接表达;
l  能够区分I/L;
l  周期快(20天,加急2周出结果)
 
样品要求
l  纯度>95%(SDS-PAGE胶图,HPLC或者是质谱分子量证据,可提供纯度更低的样品解析服务,具体电联);
l  只需要少至100ug样品(可提供更低样品量的解析服务,具体电联);
 
费用返还保证
以下结果,证明拼接已完成:
1、平均达到40乘以上的覆盖度;
2、主要的信号都能够明确解释;
3、CDR区至少有六条以上的谱图佐证;
 
保证:表达与活性验证不理想时,协助客户售后,完成进一步的表达验证工作;最终售后失败时返还该抗体合同总费用70%。

注意事项
l  请使用足量的干冰运输,并尽量选用较快的邮递方式,以降低运输过程中样品降解的可能性。
 
项目报告
l  实验步骤
l  质谱参数
l  质谱谱图
l  单抗分子序列的详细信息
 
单克隆抗体测序一站式服务
l  您只需下单-寄送样品
l  明德正康为您完成-样品处理-上机分析-数据分析-项目报告

参考文献:

1.   Automated De novo Protein Sequencing of Monoclonal Antibodies. 26, 1336–1338 (2008).
2.   Abstracts, P. Micro-scale Sample Preparation for C-terminal Protein Characterization by Mass Spectrometry Using Combined Liquid- and Solid Phase Derivatization David Hawke 1 ,. 24, (2013).
3.   Bagal, D., Kast, E. & Cao, P. Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow LCMSn. Anal. Chem. 89, 720–727 (2017).
4.   Bandeira, N., Clauser, K. R. & Pevzner, P. A. Shotgun protein sequencing: Assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol. Cell. Proteomics 6, 1123–1134 (2007).
5.   Bogdanoff, W. A. et al. De novo sequencing and resurrection of a human astrovirus-neutralizing antibody. ACS Infect. Dis. 2, 313–321 (2016).
6.   Castellana, N. E. et al. Resurrection of a clinical antibody: Template proteogenomic de novo proteomic sequencing and reverse engineering of an anti-lymphotoxin-?? antibody. Proteomics 11, 395–405 (2011).
7.   Castellana, N. E., Pham, V., Arnott, D., Lill, J. R. & Bafna, V. Template Proteogenomics : Sequencing Whole Proteins Using an Imperfect Database * □. 1260–1270 (2010) doi:10.1074/mcp.M900504-MCP200.
8.   Dasari, S. et al. Proteomic detection of immunoglobulin light chain variable region peptides from amyloidosis patient biopsies. J. Proteome Res. 14, 1957–1967 (2015).
9.   Fan, C. Y., Huang, S. Y., Chou, M. Y. & Lyu, P. C. De novo protein sequencing, humanization and in vitro effects of an antihuman CD34 mouse monoclonal antibody. Biochem. Biophys. Reports 9, 51–60 (2017).
10.  Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).
11.  Guthals, A., Clauser, K. R. & Bandeira, N. Shotgun Protein Sequencing with Meta-contig Assembly * □. 1084–1096 (2012) doi:10.1074/mcp.M111.015768.
12.  Guthals, A., Clauser, K. R., Frank, A. M. & Bandeira, N. Sequencing-Grade De novo Analysis of MS / MS Triplets ( CID / HCD / ETD ) From Overlapping Peptides. (2013) doi:10.1021/pr400173d.
13.  Guthals, A. et al. De Novo MS / MS Sequencing of Native Human Antibodies De Novo MS / MS Sequencing of Native Human Antibodies. (2016) doi:10.1021/acs.jproteome.6b00608.
14.  Lebedev, A., Damoc, E., Makarov, A. & Samguina, T. Winning The Last Battle Against Edman Degradation : Reliable Leucine / Iso-leucine Differentiation In Peptide Sequencing Using an Orbitrap Fusion Mass Spectrometer. 2–8.
15.  Lebedev, A. T., Damoc, E., Makarov, A. A. & Samgina, T. Y. Discrimination of leucine and isoleucine in peptides sequencing with orbitrap fusion mass spectrometer. Anal. Chem. 86, 7017–7022 (2014).
16.  Liu, X., Han, Y., Yuen, D. & Ma, B. Automated protein ( re ) sequencing with MS / MS and a homologous database yields almost full coverage and accuracy. 25, 2174–2180 (2009).
17.  M. Christopher, A. M. L. S. HHS Public Access. Physiol. Behav. 176, 100–106 (2016).
18.  Muth. DeNovoGUI: An open source graphical user interface for de novo sequencing of tandem mass spectra. J. Proteome Res. 13, 1143–1146 (2014).
19.  Nakamura, T., Nagaki, H., Ohki, Y. & Kinoshita, T. Differentiation of leucine and isoleucine residues in peptides by consecutive reaction mass spectrometry. Anal. Chem. 62, 311–3 (1990).
20.  Nuno Bandeira,1 Victoria Pham,2 Pavel Pevzner,1,* David Arnott, 2 and Jennie R Lill2. Beyond Edman Degradation: Automated De novo Protein Sequencing of Monoclonal Antibodies. 26, 1336–1338 (2010).
21.  Olafsen, T., Kenanova, V. E. & Wu, A. M. Antibody Engineering. Antib. Eng. 2, 69–84 (2010).
22.  Pham, V. et al. De novo proteomic sequencing of a monoclonal antibody raised against OX40 ligand. Anal. Biochem. 352, 77–86 (2006).
23.  Pisupati, K. et al. A Multidimensional Analytical Comparison of Remicade and the Biosimilar Remsima. Anal. Chem. 89, 4838–4846 (2017).
24.  Poston, C. N. et al. A quantitative tool to distinguish isobaric leucine and isoleucine residues for mass spectrometry-based de novo monoclonal antibody sequencing. J. Am. Soc. Mass Spectrom. 25, 1228–1236 (2014).
25.  Qeli, E. & Ahrens, C. H. PeptideClassifier for protein inference and targeted quantitative proteomics. Nat. Biotechnol. 28, 647–650 (2010).
26.  Rickert, K. W. et al. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies. MAbs 8, 501–512 (2016).
27.  Samgina, T. Y. et al. Mass spectrometric de novo sequencing of natural non-tryptic peptides: Comparing peculiarities of collision-induced dissociation (CID) and high energy collision dissociation (HCD). Rapid Commun. Mass Spectrom. 28, 2595–2604 (2014).
28.  Sample, L. C. Antibody Sequencing Coverage. 2017.
29. Savidor, A. et al. Database Independent Protein Sequencing ( DiPS ) enables full-length de-novo protein and antibody sequence determination Running title : DiPS enables protein sequence determination Abbreviations pTA Peptide Tag Assembler DiPS Database Independent Protein . (2017).
30.  Sen, K. I. et al. Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery. J. Am. Soc. Mass Spectrom. 28, 803–810 (2017).
31.  Shao, C., Zhang, Y. & Sun, W. Statistical characterization of HCD fragmentation patterns of tryptic peptides on an LTQ Orbitrap Velos mass spectrometer. J. Proteomics 109, 26–37 (2014).
32.  Soltwisch, J. & Dreisewerd, K. Discrimination of isobaric leucine and isoleucine residues and analysis of post-translational modifications in peptides by MALDI in-source decay mass spectrometry combined with collisional cooling. Anal. Chem. 82, 5628–5635 (2010).
33.  Sousa, E. et al. Primary sequence determination of a monoclonal antibody against α-synuclein using a novel mass spectrometry-based approach. Int. J. Mass Spectrom. 312, 61–69 (2012).
34.  Squire, N. L., Beranov??, ????rka & Wesdemiotis, C. Tandem mass spectrometry of peptides. III???differentiation between leucine and isoleucine based on neutral losses. J. Mass Spectrom. 30, 1429–1434 (1995).
35.  Tang et al., 2005. NIH Public Access. Bone 23, 1–7 (2008).
36.  Tang, W. H., Kil, Y. J., Bern, M., Nayak, S. & Igm, A. Automatic End-to-End De Novo Sequencing ( including I / L ) of Antibodies with EThcD Fragmentation ® Features Byologic ® Features Byologic ® Features Byologic Leucine / Isoleucine Determination Workflow NISTmAb ® Features Byologic Discussion and Conclusions IgG / IgM Glycosylation Experimental Methods. 26, 103362 (2017).
37.  Tanokura, M. Supplemental materials. J. Biochem. 94, 62 (1983).
38.  Tran, N. H. et al. Complete de Novo Assembly of Monoclonal Antibody Sequences. Sci. Rep. 6, 1–10 (2016).
39.  Vorobyev, A., Hamidane, H. Ben & Tsybin, Y. O. Electron Capture Dissociation Product Ion Abundances at the X Amino Acid in RAAAA-X-AAAAK Peptides Correlate with Amino Acid Polarity and Radical Stability. J. Am. Soc. Mass Spectrom. 20, 2273–2283 (2009).
40.  Wang, R. Protein De novo Sequencing by. (2016).
41.  Xiao, Y., Vecchi, M. M. & Wen, D. Distinguishing between Leucine and Isoleucine by Integrated LC-MS Analysis Using an Orbitrap Fusion Mass Spectrometer. Anal. Chem. 88, 10757–10766 (2016).
42.  Zhokhov, S. S., Kovalyov, S. V., Samgina, T. Y. & Lebedev, A. T. An EThcD-Based Method for Discrimination of Leucine and Isoleucine Residues in Tryptic Peptides. J. Am. Soc. Mass Spectrom. (2017) doi:10.1007/s13361-017-1674-3.
43.  Zubarev, R. Protein primary structure using orthogonal fragmentation techniques in Fourier transform mass spectrometry. Expert Rev. Proteomics 3, 251–261 (2006).

北京明德正康医学研究有限公司 © 2021 京ICP备2021006034号-1